If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7k^2-16k=100
We move all terms to the left:
7k^2-16k-(100)=0
a = 7; b = -16; c = -100;
Δ = b2-4ac
Δ = -162-4·7·(-100)
Δ = 3056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3056}=\sqrt{16*191}=\sqrt{16}*\sqrt{191}=4\sqrt{191}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4\sqrt{191}}{2*7}=\frac{16-4\sqrt{191}}{14} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4\sqrt{191}}{2*7}=\frac{16+4\sqrt{191}}{14} $
| F(n)=8n-3F(5) | | -2(3n-3)=14 | | 13+2(2x+1)=1 | | 3(-4x+1)+1+5=-3 | | 4r+20-6=34 | | (-15)-(-5q)+4=5q-11 | | -91=-7(b+6) | | 7(4(x-1)+28)=x | | -48t+2=-71t+14 | | 2/3x-1/5=3/5 | | -0.7*10=n | | 1.5=3^x | | 14x+3+4x+10=15 | | 12+(3c-2)=56 | | 27=-4x+19 | | b+1/2b2=165 | | 3.9+10m=7.27 | | 5x+8=-24 | | (5x-6)2=115 | | 3=t11.5-t | | 10y-6y-12=49.68 | | y=3/5*10-3 | | .16(y-5)+0.08y=0.12y-0.5 | | 5=7y+4 | | 5x-8+2x=15+10x-3x | | 160=8(8-2v) | | -5(x-4)+9x=36 | | 3(−4x+1)+x+5=-3 | | 3m-9/6=10 | | (10x+17)=(12x+7) | | 25k=7+3k-12 | | 7x-2(x-12)=79 |